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I. Phy. A: Math. Gen. 25 (1992) 5151-5163. Rinted in the UK 

Aharonov-Anandan geometric phase for spin-; periodic 
Hamiltonians 

David J Fernindez Ct, Luis M Nietoz, Mariano A del Ohno and 
Mariano Santander 
Departamento de Fisica Te6rica, Universidad de Valladolid, 47011 Valladolid, Spain 

Received 29 January 1992 

Abstract. We calculate exactly the Aharonov-Anandan phase for the evolution of a 
spin-; in some periodic time-dependent magnetic fields, and give a discussion of the 
results versus the adiabatic ones. In particular, we analyse the existence of qclic states 
and show explicit examples of systems with a presaibed value of the AA phase for all 
cyclic evolutions. 

1. Introduction 

Berry’s phase [l] and its generalization, the Aharonov-Anandan (AA) phase [2], have 
focused the attention of many physicists in recent years [3-51. In this paper we 
study the geometrical phases for the spin evolution in presence of periodic time- 
dependent homogeneous magnetic fields. Floquet’s theory gives a good method to 
obtain the geometric phase after a cyclic evolution, as Moore showed recently [6,7]. 
For Berry’s adiabatic phase, the closed circuit is given by a cyclic change of the 
external Hamiltonian (in some parameter space), and the relevant quantity is the 
anholonomy of the circuit relative to the Berry connection. When, for instance, we 
cc?nside.r 8 rmting magfietic fie!& the parameter space k a sphere and the Berry 
connection is the ordinary Levi-Civita connection for the standard metric on the 
sphere. This leads to the equality of the Berry phase and the area enclosed by the 
path of the magnetic field in the parameter space. It is interesting to remark that 
previous authors implicitly introduced in the formulation of the adiabatic theorem a 
general phase (see for instance [8]) called by some authors [9] the Born-FockSchiff 
(BFS) phase; for a periodic Hamiltonian it reduces to Berry’s adiabatic phase. 

For the AA phase, the structure involved is a Hilbert bundle with base the projec- 
tive state space and fibre U(1). The connection in the space of states-the projective 
Hilbert space-is a canonical one, independent of the Hamiltonian. The AA phase 
appears as the holonomy in the projective space, as in general the horizontal lifting of 
a closed curve in the projective space is open on the fibre bundle [lo]. Furthermore, 
in the spin-; case each spin state can be represented as a point in a unit 2-sphere 
S‘ and its evolution is seen as a path on this surface. A cyck evoiution of the state 
is a closed curve on the spherical surface and the AA geometrical phase is directly 
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related with the area enclosed by the curve [ l l ]  because in this case the canonical 
connection turns out to be the Levi-Civita connection for the standard Riemannian 
structure of the sphere. 

A further difference is that adiabatic phases refer to the evolution of particular 
states under a controlled motion of external parameters, while the AA phase refers to 
the exact evolution of any cyclic state in a (possibly time-dependent) given Hamilto- 
nian. In the adiabatic limit, starting from the AA phase we recover Berry's phase as 
a first-order term, while the following terms describe deviations from adiabaticity. 

The paper is organized as follows. Section 2 gives a brief overview of the rela- 
tionship between the spin state space and the sphere S2 with the standard 2-form 
area. This sphere is also the phase space in the Moyal formalism of quantum me- 
chanics [12,13]. The quantum evolution is described by a curve in the sphere; an 
explicit expression for the oriented area enclosed by any closed curve is given. In 
section 3 we present a general expression of the Aharonov-Anandan phase for any 
cyclic evolution in a homogeneous but time-dependent magnetic field in terms of the 
path on the spin sphere. Some comments on Berry and BFS phases for adiabatic 
closed evolutions are also given. In section 4, we give completely explicit expressions 
for the AA phase in some specific examples of physical interest: a linear harmonic 
oscillating and a rotating magnetic field, both with a constant term. It is surprising 
that for particular magnetic fields, all states are cyclic and the geometric phase can be 
adjusted by adequately f i ing the relative strengths and frequency of the components 
of the magnetic field. In particular we give conditions on the magnetic field which 
lead to a zero AA phase in all states, or to some prescribed values in a specific initial 
state. The relationship between adiabatic (Berry's and BFS phases) and the AA phase 
is explicitly discussed in these examples; we evaluate the adiabatic geometric phases 
and compare these results with the ones obtained using the Anandan and Stodolsky 
method [14] to compute the Berry phase. 

2. Spin-$ systems in timedependent magnetic fields 

Let ns consider a spin-; charged particle in an arbitrary homogeneous magnetic field 
E(1) .  The spin term of the Hamiltonian associated to the system is 

The space of states of this system is the projective space @PI,  which is diffeo- 
morphic to the unit sphere Sz [15]. The point in S2 associated with an arbitraly 
state I+) of this system is n = (+lul+). Reciprocally, to a given vector n E S2, 
parametrized in a North chart by 

n l =  s i n 0 c o s 4  n 2 =  s i n e s i n 4  n 3 =  cos0 (2.2) 

we can associate the spin state 

The Schrdinger equation for the state \+(i)) 

(2.3) 

(2.4) 
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is expressed in the following form for the vector n( t ) :  

dn - = - p B ( t )  x n .  
d t  (2.5) 

Notice that the same equation can be obtained from a phase-space quantum approach 
to the problem [12,13]. 

In general, the evolution for an initial state n(0) is a curve on the sphere, n( t ) ,  
that, depending on the external field, can be very complicated. We will study some 
cases for which n ( t )  describes a closed curve, that is, for some r > 0, n ( r )  = n(0). 
When this is the case, it makes sense to evaluate the area (which equals the solid 
angle from the point of view of the sphere imbedded in a three-dimensional ambient 
space) enclosed by the trajectory: 

~ a =  J n . d S .  
Surface 

An easy way to compute that magnitude is to transform the surface integral into 
a line integral. Therefore, we need a vector field A ( T )  such that V x A = n on 
the surface. It is well known that the vector potential describing the monopole field 
satisfies this requirement. In terms of Cartesian coordinates T = (z1,z2,z3), this 
vector potential is given by 

T 
' J x A = -  

r3 

Making use of the Stokes theorem, the total solid angle subtended by the oriented 
closed curve n( t )  is 

where n,, n 2 ,  n3 are the components of n and n, ,  n2 denote time derivatives. 

3. The geometric phases 

Let us first discuss the AA phase. Take a generic initial state I+(O)) given by 

At the instant t the state I?( t ) )  will be 

with O(0) = eo and 4(0) = #o, If we now assume that the evolution of the initial 
state I$(O)) is cyclic with eriod r, then e ( t )  must be a r-periodic function and we 
should have I$(r)) = e'*F)I+(O)). Comparing (3.1) and (3.2), it is straightforward 
to prove that exp{ ia(r)}  = exp{i[+(T) - 4(0)1/21 = exp{-i[+(T) - @(0)1/2}, 
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so that d ( ~ )  - 4(0) = 2 ~ m ,  for some m E 2.. The AA phase p associated to the 
evolution between t = 0 and t = 7 is given by the well known formula [2] 

David J Ferncinder C et a1 

(3.3) 

A simple computation leads to 

Introducing now Cartesian coordinates ( n, , n 2 ,  n3) in the ambient space, it is clear 
that 4 = tan- ' (n2/nl)  and taking into account that n2 = 1, 

Finally, substituting (2.2) and (3.5) in (3.4), we obtain the following expression for p: 

n1n2 - n n 
d t  

Comparing (2.7) and (3.6), we have shown that 

p = -;an. (3.7) 

This result was already known [ll], but our derivation can be illustrative to the reader. 
The determination of the cyclic states obeying the Schrodinger equation (2.4) or (2.5) 
and the evaluation of (3.6) for their AA geometric phases depends on the explicit 
form for B ( t )  in (2.1), and, in general, is not an easy task. 

Consider now a slowly variable periodic magnetic field B( t ) ,  so that the adiabatic 

(i.e. the spin state points along B(0 )  or in the opposite direction), because B(1) 
changes in time adiabatically, the spin associated point will follow the field B(t)  at 
each t ,  i.e. 

theorem i_r app!icab!e. If the initial stare B a proper state Qf !he ifiiti.1 H.m;l!Qnian 

nZ(t) = *Wt) / lB( t ) l .  (3.8) 

In particular, when the field B(t).returns to its initial value, say at t = r, the two 
states n$( t )  will also return to their initial positions on S2, n g ( r )  = n$(O) and 
close a circuit in the spin space state. It is not a surprise to find that the value of 
the AA phase for this circuit (as given by (3.6) and (3.7)) equals the adiabatic Berry 
phase, thus making clear the equality of the area enclosed by the loop n$( t )  on S 2  
in the spin state space with the solid angle swept by the path of the magnetic field 
iB( t )  in the three-dimensionai parameter space oi v a k  of the magnetic fieid. 

In order to compare for some particular examples the phases obtained by these 
techniques with the ones calculated by using the adiabatic theorem, we now summa- 
rue the prescription given by Anandan and Stodolsky [14] for an adiabatically varying 
r-periodic Hamiltonian of the form (2.1). 
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Let IE+(O)) be the eigenstates of H ( 0 )  = -pB(O)  . s with eigenvalues 
Ei(0). These two states point respectively along the magnetic field B(0) and 
in the opposite direction. Suppose that the r-periodic unitary operator D ( t ) ,  
with D ( r )  = D(0)  = I ,  diagonalizes H ( t )  in the base of eigenstates IE+(t)) = 
D(t)lE+(O)), i.e. 

H (  1) I E* (1 )) = E ,  ( 1  1 I E* ( 1  1). (3.9) 
0 

Starting from the states IE+(t)) we construct a new base IE+(l)) = eiT+(‘)lEi(t)) 
satisfying the phase fixing conditions [8] 

(3.10) 

The y+(l), known as the Born-FockSchiff (BFS) phases, read: 

(3.11) 

The adiabatic evolution induced by the Schriidinger equation on IE+(O)) is: 

A 

In contrast with the base IE,(t)) which is chosen r-periodic, the base IE+( t ) )  does 
not come back, in general, to its initial values at t = r:  

A 

( E + ( r ) )  = e ’7+(T )JE* ( r ) )  = e i Y + ( r ) l E + ( 0 ) ) .  (3.13) 

Thus, the Berry phases y * ( r )  are absorbed in the base IE,(t)) because the phase 
fixing requirement; in the Berry original formulation the same phase factor was 
needed to compensate the absence of the mentioned condition on the base IE*(t)) 
(for an extensive discussion of this subject see A). 

In the following we will calculate both AA and adiabatic phases expiicitiy and the 
general relation (3.7) will be verified for some interesting examples. 

A 

4. Examples 

4.1. Linear oscillating magnetic field 

Let us suppose that the spin-; evolves in the presence of the following oscillating 
magnetic field: 

B(1)  = ( O , O ,  Bo + B c o s w l )  . (4.1) 
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The evolution equation for the Hamiltonian (2.1). with B ( t )  given by (4.1), reads: 

David J Femhdez C et a1 

(4.2) 
d 1 

d t  -u(t) = -hH( t )u ( t )  u(o) = r 

U ( t )  being the evolution operator of the system, 1$(t)) = U(t) l$(O)) .  The exact 
solution is given by the standard expression U ( t )  = expi-f rnt H(t’)dt’] because 
the Hamiltonians at different times commute. An explicit cal&kon gives- 

1 ( exp  [i (%$ + & s i n  w t ) ]  0 
0 exp [-i (9 + k s i n w t ) ]  

U ( t )  = (4.3) 

with h, = # E ,  and h = p E ~  of course; the same result can be found by writing 
U ( t )  as 

(4.4) 

(because I, ul ,  u2, us are a base for the vector space of 2 x 2 matrices) and solving 
the system of ordinary differential equations for (go,  gl, g2, g3). 

Choosing (3.1) as initial state (with c $ ~  = 0 and disregarding in future the subscript 
of the angle 0,) we have 

exp [i (%$ + A s i n  w t ) ]  cos 
exp [-i (y  + &sin  w t ) ]  s in  (4.5) 

For given b,,b,w, this state becomes cyclic for a set of times T,,, labelled by an 
integer m, satisfying the transcendental equation 

m E Z .  (4.6) 6,r, b .  
2 2w 

+ -sin w r m  = mrr 

We then have I$(T,,,)) = eimSI$(0)), and its associated geometric phase is, accord- 
ing to (3.3): 

a, = mrrp - cos e ) .  (4.7) 

In order to evaluate the adiabatic phases we note that in the parameter space 
of values of the magnetic field, the closed path followed by B ( t )  is a segment 
Of a straight line along the z-axis with period T = 2n /w .  This path encloses no 
solid angle, so that the adiabatic phases p’$ are equal to zero for the two adiabatic 
States np(t) in (3.8). On the other hand. the application of the AnandanStodolsky 
prescription is trivial in this example by choosing for IE+(O)) and IE-(O)) the usual 
S, up and down states and D ( t )  = I. The initial basis satisfies the phase fixing 
condition for all 1 ,  so the BFS phases are null, y*(t) = 0, and the Berry phases for 
the two adiabatic cyclic states are also equal to zero. These results agree with the 
Ones obtained by evaluating the areas enclosed by the trajectories n$(t )  in Sa or by 
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Figure 1. The projection on the z-y plane of the spin lrajectory n(t) versus time 
(vertical axis) in the oscillating magnetic field (4.1). The parameters of the system were 
taksn a i  b/w = 1 and b o / w  = & and the radius of lhe cylinder is p = sin 8. In the 
sphere of states S z ,  n(t) moves on a cone with vertex at the origin and cone semiangle 
8, returning io iis initiai condition for ail i = r,,, where the cume nitj intersects 
the vertical line (sin 8,0, t). For these times, the AA phase involves just the cffective 
number of rotations (m) that the spin has performed. 

the cyclic paths + B ( t )  in the parameter space. All other states are not cyclic in the 
adiabatic approximation. 

However, the exact solution of the system is somewhat different: for some specific 
values of the time interval all states are cyclic, and the path n( t )  followed by the state 
is 

n,( t )  = sin 0 cas 

(4.8j nz(t) = -sin 0 sin 

ns ( t )  = cos 0 

We see that n moves on a cone with vertex at the origin and cone semiangle 0 (see 

value n ( 0 )  after m complete turns on the cone. The natural geometric quantity on 
5’ associated to this evolution (no matter how it has been performed) is the area 
(2.7) enclosed by the closed trajectoly, AR = -2mr(1 - cos e), which coincides 
with m times the solid angle subtended by the cone. This result and (4.7) verify 
the general relation (3.7), as expected. In particular, the exact evolution of the two 

figure I& FQy i = T, satisfying the condition ( 4 4 ,  n ( t )  reaches again its initial 
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adiabatic states Bo = 0, A ,  provides an AA phase as given by (4.7) 
0 for 0, = 0 

David J Femcindez C er a1 

pm = ( 2mrr for 0, = ?r . 
The phase factor e1Pm is always equal to 1, and therefore coincides with the Berry 
phase factor. 

It is interesting to observe in this example the existence, for arbitrary initial 
conditions, of cyclic evolutions with a null geometric phase. For fixed bo, b ,  w ,  let 
T, he the solution of (4.6) with m = 0, and let y the solution of the transcendental 
equation t an  y = A + y ,  0 < y < x / 2 .  In that equation, the linear term dominates 
the oscillating one in the interval -1 < (b /b , )  < 1/ cos y 5 4.60334 and, therefore, 
there is no solution for T, # 0. However, outside this interval we can always find 
at least a value of T~ for which the state returns to the initial condition but without 
geometric phase. 

4.2. Magnetic field rotating on a cone 
In the previous problem, quite general states are cyclic hut, in other situations, the set 
of cyclic states is rather narrow. Therefore, the determination of these states is very 
important. As an example, let us consider again the spin-;, hut now with an external 
magnetic field precessing around the z-axis with a constant angular velocity w :  

B = ( B c o s w t ,  B s i n w t ,  Bo), (4.9) 
In this standard case, the parameter space is the sphere S2 of all magnetic fields 

of constant module and the path in this space is a circle around the z-axis. The 
eigenstates of the initial Hamiltonian are those of bol + boo3 (where we denote 
again b = p B  and bo = pB,,). The Berry phase for these adiabatic states is very 
well known, and equals to the solid angle 2n( l  - cos(+) enclosed hy the cone of 
semiangle (* (tan(+ = b/b, ,  (- = A - (+). Other states are not cyclic in the 
adiabatic approximation. 

We will solve the evolution equation (4.2) with H ( t )  in the form (2.1) and the 
given B .  Note that this Hamiltonian can he expressed as 

H ( t )  = -- [ b ( c o s w t u l  + sin wtu,)  + boa3] = - - e - ' w c o s / 2 ( b o l  + b , ~ , ) e ' ~ ' ~ ~ ~ ~ .  

(4.10) 

Here, the Hamiltonians at different times do not commute, and we have to resource 
to a different method to solve (4.2). If we take U ( t )  = e-'wt*3/2 W ( t )  (this trans- 
formation physically represents a 'transition to a rotating frame' [1&18]), then W ( t )  
obeys a time-independent evolution equation 

h h 
2 2 

d I 
- W ( t ) =  - [ b u l + ( b o + w ) 0 3 ] W ( 1 )  W ( O ) = I .  (4.11) d t  2 
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with b, = bo + w and wc = m. Choosing (3.1) as the initial condition, we 
cannot adjust t to achieve a cyclic evolution of I?(t)) for any 6'. However, there exist 
two special initial States whose evolution is cyclic. At first sight, one could expect 
these being the (adiabatic) eigenstates of bul + boo,, because the spin is aligned with 
the magnetic field at the initial time. But this is not so, and the cyclic states are 
instead the eigenstates of bur + blu3 corresponding to the eigenvalues A, = i w c .  
We shall denote them as I?,) and their angles xi are given hy x +  = t a n - ' ( b / b , )  
and x- = ?r - x + .  Their evolution is quite simple: 

For r = 2 n / w  the states are cyclic: 

I ? + ( ~ ) )  = e - i x ( l - h / w )  l?i) = .'++I?*) 
and their geometric phase reads 

(4.13) 

(4.14) 

P* = -a(l - ($*Iu,I+*)) = -a(l -cos  X i ) .  (4.15) 

In the adiabatic limit, the cyclic states become those pointing in the instantaneous 
direction of B ( t )  (see (3.8)). A direct calculation of the solid angles generated by the 
oriented curves n $ ( t )  on Sz leads to the usual expressions 0: = -x(1 -cos(+). 
This same result can be reached by using the AnandanStodolsky method. The 
eigenstates of the Hamiltonian at t = 0 and the matrix D ( t )  which diagonalizes 
H ( t )  in this basis are given by 

The r-periodic base (used in the Berry approach to the adiabatic approximation) 
reads 

(4.17) 

A direct calculation (see (3.11)) leads to the following BFS phases which make the 
base IE+(t))  satisfy the phase fixing condition: 

A 

(4.18) 
wt  W l  

2 2 
Y i ( t )  = -- (1 - cos ti) = -- (1 F cos F, )  . 

For t = T = 2 n / w  this relation gives the adiabatic Berry phases r,(r) = 
-n (1 - cos (+) which are the same as that obtained by the application of our general 
formulae to the two adiabatic eigenstates n$( t )  of the system. 

The geometric character of 0, is clear, working directly with (2.S), which in this 
case takes the form 

(4.19) 
b0 -bs inwt  
0 

b s i n w t  - b c o s w t  0 



5160 David J Ferncinder C et a1 

To solve this system, let us consider the new vector ( c o r t  sinwt 0 
a ( t )  = -sinwt coswt 0 

0 1  

The differential equation for a ( t )  is time-independent: 

61 0 
h(t).= ( -il 0 b )  a ( t )  o(0) = n(0) 

- b  0 

The solution of (4.21) provides n: 

(4.20) 

(4.21) 

coswt -sinwt 0 

1 

4 0 )  ' 

(4.22) 

Note that the evolution given by (4.22) is basically the superposition of two rota- 
tions. The first one takes place around an axis placed in the 2-2 plane, at an angle 
x+ from the z-axis and having angular velocity wC. The second one is a precession 
around the z-axis with angular velocity w. Due to the fact that the frequencies wc 
and w are, in general, non-commensurable, the motion for an arbitraly initial state 
n(0) is not cyclic. The only exceptions are the trajectories in which n(0) is aligned 
in the direction defined by x+: 

wc 

O) ( 0  0 

( U( W <  

n(t)  = sinwt coswt 

($)' + (%)'cosw,t %sin w,t %(I - cos wet) 
-h sin w,t cos w,t & s i n  w,t 

%( 1 - cos wct) -- * sin w,t (%)' + (&)2  cosw,t 

(4.23) 

These WO vectors are the representatives on the sphere Sz of the two states l$*(O)). 
The vectors n*(t)  move around the z-axis with an angular velocity w,  and for 
T = 2n/w they return to their initial values, generating a solid angle (equation (2.7)) 
An* = 2 r (  1 - cos x*) = -2,/3,. 

Let us remark once again that these phases are different from the solid angle 
enclosed by the trajectoly of the magnetic field in the parameter space [2n( 1 - 
cos €*)I. The exact evolution of the proper states of the instantaneous Hamiltonian 
is not cyclic, in general. But, of course, in the adiabatic limit (w - 0) our cyclic 
states go over the proper states of the instantaneous Hamiltonian because x* 4 €+ 
in this limit. 

It is interesting to obtain the BFS phases and states for the exact evolution 
(not necessarily adiabatic). We choose as initial conditions the eigenstates I$+) of 
b o ,  + b , a ,  because their corresponding evolution is cyclic. Note that the adiabatic 
limit of the AA phases and eigenvectors of b a ,  + b , a ,  go over the adiabatic phases 
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and eigenbasis of H ( 0 ) ;  then we can use I+,(t)) to construct the generalization. We 
fix as the r-periodic base (which is proportional to I$*(t)) at each t )  

(4.24) 

Now we constmct the base l&(t)) = e'o*(*)lEi(t)) which satisfies the phase fixing 
requirement (E+( t ) l$ I&*( t ) )  = 0.  Henceforth 

- -  ~ 

The generalized BFS phases & ( t )  provide the AA phases pi(.) = - R  (1 - cos x+) 
as we can see comparing this result with (4.15). 

If ,y* is considered as a function of w,  from (4.15) we get an exact expression 
for the AA phases in powers of the adiabatic parameter w. The first terms of this 
expression are 

(4.26) 

where, of course, the first term is the Berry phase, but the next are 'non-adiabatic' 
corrections to that phase. 

An interesting question can be posed: what happens when wC and w in the previ- 
ous situation are oommensurable? If this is the case, we can write wc = d / n ,  where 
1 ,  n E M. Any initial state in the form (3.1) performs a cyclic evolution according to 
(4.12), with period T = 2 n x / w ,  I$(.)) =Z ei('-n)rl+(0)). The associated geometric 
phase can be evaluated explicitly: 

p = ia[l - cos(e - x+)] - nR[l -cos xt cos(e - x t ) l .  (4.27) 

So, in this case UN states have a cyclic evolution, with a period which is some multiple 
of t!x peed ~f :he exte:na! riiagnetic %!d; :ki happens. oiiijr $i a specific ie!ati'uoa 
between the relative amplitudes of the constant and rotating parts of the magnetic 
field. 

In S 2 ,  the vector n(t) is again cyclic, and does not now sweep a cone, as in 
the two cases previously discussed (see figure 2), but the spherical analogue of an 
epicycloid or an hypocycloid. However, the area enclosed can be explicitly evaluated 
from (2.7) and (4.22): 

AR = 2 n R [ 1  - cosx+  cos(e - X+)I  - 217+ - cos(e - X+)I = -20. (4.28) 

For given values of n, 1, there may exist cyclic states whose geometric phase 
vanishes, This occurs when 0 in (3.1) takes the value 

(4.29) 

If 1 2 n, this equation has a solution for any value of x+. For 1 < n, that equation 
admits solution only in the case that x+ verifies 21 2 n( 1 + cos xt). We can always 
select the physical parameters so that this inequality is accomplished. 
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Figure 2. A closed trajectory far the spin in the precessing magnetic field (4.9) in the 
case in which the frequencies wc and w are commensurable. The chosen parameters are 
b /w  = 3 and b o / w  = 3 so that b ,  / w  = 4 and w,/w = 5 ,  while the initial conditions are 
n(0) = ( q , O ,  i). The global period is r = 2 r / w  and in the rotating frame the system 
performs five rotations around an axis on the z-: plane at the angle ,y+ = t a n - l ( f )  
off the z-axis. The evolution in the original frame is obtained by combining this with a 
rotation around the z-axis, thereby obtaining an spherical epicycloid. 

5. Concluding remarks 

We have explicitly studied AA and adiabatic (BFS and Berry) phases for a spin-f in 
some magnetic fields. When the AA phase is developed in powers of the adiabatic 
parameter, then the first order in the development corresponds to the Berry phase, 
and the other terms can be considered as ‘non-adiabatic’ corrections to that phase. 
Thus in the adiabatic evolution both phases agree; however some care must be 
exercised in the comparison as in general the adiabatic eigenstates of the Hamiltonian 
are not cyclic. It is also interesting to remark that for particular values of the magnetic 
field parameters all the states are cyclic, and the geometric phases can he brought to 
prescribed values, including 0. 

Here we have considered only the spin part of the Hamiltonian. Another inter- 
esting system is a spinless particle in a (periodic) electromagnetic field. Now there is 
no spin-magnetic field coupling, but the Hamiltonian gets a term from the minimal 
electromagnetic substitution p - ( e / c ) A ( r ,  t ) .  In a forthcoming paper we will study 
this case, where a geometric phase will also appear for ‘cyclic’ evolutions. 
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